全国服务热线:康工13580445426

产品分类

广州海康海洋技术有限公司

微信:13580445426

手机:康工13580445426

邮箱:2017346678@qq.com

地址:广州市天河区天源路401号之一137-141房B161

海上风电

首页 > 海上风电

海上风电运维情况和主要难点

海上风电 (5).jpg

  我国海上风电装机量近几年正经历着快速增长,伴随着海上风电装机量的增长,海上风电运维的需求也随之增大。海上风电机组长期处于恶劣的海洋环境,就机组故障率而言,海上风电明显高于陆上风电。此外,更加复杂的自然条件也给海上风电运维带来更多挑战。未来智慧海上风电场的建设,需要科学的运维策略,智能的故障诊断和监测技术以及稳定高效的运维船只等设备的支持。

  海上风电运维科技的创新趋势

  海上风电的快速发展给运维工作提出了新要求,海上风电运维的创新包括转变运维方式、优化运维策略、改进运维设备、提高故障诊断和监测技术等。海上风电智慧运维体系包含多项智能化技术,通过智能传感技术、边缘计算技术及机器人技术等实现智能感知;通过数据可视化技术、3D建模技术和网络安全技术等实现智能监控;通过模式识别技术、故障预警技术和大数据技术等实现智能分析;借助专家知识库、人工智能技术和数字孪生技术进行智能决策;通过移动互联技术、虚拟现实技术和增强现实技术实现智能辅助。
海上风电 (6).jpg

  ⒈海上风电运维管理技术

  海上风电全生命周期的智慧化,是实现海上风电平准化度电成本最优的关键,海上风电的智慧运维是一项系统工程。

  智慧运维体系借助大数据和智能数据技术,基于数据进行运维决策。采用精细的成本管控,通过全生命周期内风机运维成本和收益的实时计算,提升运维管理精细化水平,有效降低运维成本。做好风机部件级离岸测试,打造海上风电“基因工程”,制定合理的运维检修计划,提升机组运行可靠性。根据大部件预警信息,提前锁定区域内大部件吊装船只及大部件备品,缩短大部件故障停机时间。通过故障预警和运检维一体化系统,优化运维计划及运维调度,降低海上风电运维成本。评估海上风场发电性能及电量损失原因,开展控制策略优化技术的研究和应用,进一步提高风机发电量。优化不同海域、不同规模的区域化风场交通运输工具,提升运维效率,降低日常运维交通成本。

  科学合理地规划运维时间和路线,采用预运维方式清除故障隐患,降低运维成本,这是海上风电运维模式的发展目标。针对运维路径的规划,应基于风功率预测、运维船舶的可及性、机组运行状态和健康状态,选择安全、便捷、成本最优的运维交通路线。
海上风电 (3).jpg

  基于风险的维护方式,能够降低整体的维护难度和生命周期成本,呈现各方均满意的可利用率和机组性能。计划检修结合故障检修的传统运维策略,对人力、物力和财力的消耗很大。随着运维技术的不断进步,以状态检修为主的运维策略成为发展趋势。

  状态检修以设备状态为出发点,通过在线监测和离线测量等方式查找潜伏性故障,评估设备状态。状态检修的针对性较强,通过对设备的综合分析,判别是否要对设备进行检修,检修效果也更好。基于状态检修的运维策略可便于统一调度运维资源进行多台机组的检修工作,提高单次出海作业效率,减少出海次数,降低交通成本。状态检修是海上风电运维管理中的重大创新,状态检修的实现需要结合不同海上风电场的特点,监控并分析机组的运行状态,强化零部件生命周期监控以及大型部件的状态监测。

  ⒉海上风电机组监测和分析技术

  海上风电的智能监测包括水下智能监测、结构疲劳和损伤监测、海缆监测以及基础冲刷监测等。智能分析技术涵盖气象预报和预警系统,窗口期管理系统,船舶、航路、人员管理系统以及海上安防系统等。在线监测技术通过多种通信介质,实时传输并可视化观测数据,为数据处理提供便利。水下智能监测借助水下机器人,有针对性地对目标机组水下部分进行检视,可直观地监测基础的整体状态。对支撑结构的疲劳和损伤监测,通过传感器监测结构的变形、应力、位移、振动以及腐蚀状况等数据,并实时传输至监测系统,具体的监测项目以及监测点的布点位置可依据风电场具体的运维和安全评估要求选取。海洋环境参数监测通过传感器和高速传输技术实时获取项目海域数据,包含波浪数据、风数据、海流数据和温盐数据等,为海上风电运维积累背景参数资料。海缆监测通常基于光纤和局部放电的电缆在线监测方法,对海底电缆的运行状态进行安全监控。

  海域监测通过对海底电缆周围海域过往船舶进行持续监控,从而减少船舶锚泊引起的电缆破坏。基础冲刷监测通过数据采集设备获得冲刷深度等参数,可与支撑结构响应监测相结合,为海上风电基础结构提供更高的安全保障。

  ⒊新型风电运维船

  海上风电的智能监测包括水下智能监测、结构疲劳和损伤监测、海缆监测以及基础冲刷监测等。智能分析技术涵盖气象预报和预警系统,窗口期管理系统,船舶、航路、人员管理系统以及海上安防系统等。在线监测技术通过多种通信介质,实时传输并可视化观测数据,为数据处理提供便利。

  水下智能监测借助水下机器人,有针对性地对目标机组水下部分进行检视,可直观地监测基础的整体状态。对支撑结构的疲劳和损伤监测,通过传感器监测结构的变形、应力、位移、振动以及腐蚀状况等数据,并实时传输至监测系统,具体的监测项目以及监测点的布点位置可依据风电场具体的运维和安全评估要求选取。海洋环境参数监测通过传感器和高速传输技术实时获取项目海域数据,包含波浪数据、风数据、海流数据和温盐数据等,为海上风电运维积累背景参数资料。

  海缆监测通常基于光纤和局部放电的电缆在线监测方法,对海底电缆的运行状态进行安全监控。海域监测通过对海底电缆周围海域过往船舶进行持续监控,从而减少船舶锚泊引起的电缆破坏。基础冲刷监测通过数据采集设备获得冲刷深度等参数,可与支撑结构响应监测相结合,为海上风电基础结构提供更高的安全保障。

  严苛的海洋环境给海上风电运维作业带来了诸多不便,为了提高运维便利性,降低运维人员的安全风险,机器人和无人机等设备得以应用,机器人系统也是海上风电智慧运维的关键组成部分。以机器人代替人力进行运维作业,可降低运维事故风险,提高检测效率和精度,节省维修成本。据估计,未来良好的机器人系统可帮助风电项目在其生命周期内节省3300万美元。欧洲首个海上风电运维机器人测试中心已于2020年在葡萄牙建立,该中心致力于恶劣环境下机器人运维作业的相关研究。

本文标签:海上风电